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Nonasymptotic Transport Properties in Fluids and
Mixtures Near a Critical Point'

R. Folk*> ? and G. Moser*

We review the critical dynamics of fluids and mixtures. Special attention in the
comparison with experiment is paid to nonasymptotic effects. Our theoretical
results are based on the complete model H' of Siggia, Halperin, and Hohenberg
including the sound mode variables. Using the dynamic renormalization group
theory, we calculate the temperature dependence of the transport coefficients as
well as the frequency-dependent sound velocity and sound attenuation. In
mixtures a time ratio between the Onsager coefficients related to the diffusive
modes, which is directly related to the critical enhancement of the thermal
conductivity near a consolute point, has to be taken into account. The sound
mode contains, besides the dynamic parameters, a static coupling related to the
logarithmic derivative of the weakly diverging specific heat. The deviation from
the asymptotic value of this coupling at finite frequencies and temperature dis-
tance from T, leads to additional nonasymptotic effects. Our theory, which
derives the phenomenological ansatz of Ferrell and Bhattacharjee for pure fluids
and mixtures near a consolute point, is also applicable near a plait point.

KEY WORDS: consolute point; dynamic critical phenomena; gas-liquid criti-
cal point; mixtures; plait point; renormalization-group theory; sound attenua-
tion; transport properties.

1. INTRODUCTION

Universality of the dynamics at liquid and mixture second-order phase
transitions can be proven by measuring the asymptotic values of exponents
and amplitude ratios of transport coefficients (TCs) calculated by renor-
malization group theory (RGT). In order to extract reliable values for
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these quantities, it is necessary to include corrections to scaling in the
analysis of the experimental data (for a review, see Ref. 1). This was inter-
esting in itself since the correction amplitudes are also related by universal
ratios.

However, it has become clear that, although the mixtures lie in the
same universality class as the pure fluids, the nonasymptotic corrections
are different. It turned out that, in mixtures, an additional dynamic
parameter [a combination of Onsager coefficients (OCs)] with a dynami-
cal transient exponent smaller than that of the pure liquid has to be taken
into account [2]. This additional parameter allows an understanding of
the enhancement of the thermal conductivity, which stays finite near a con-
solute point and which was observed in a 2-butoxyethanol-water mixture
[3].

On the other hand, the behavior of the thermal conductivity near a
plait point (vapor-liquid critical point in a mixture) is quantitatively dif-
ferent. In *He-*He mixtures the thermal conductivity seems to diverge as
in the pure liquid [4] (in fact it does not reach its finite asymptotic value
within the experimental region), whereas in methane—ethane mixtures, the
enhancement could be measured [5] recently. However, the enhancement
is much larger than that at the consolute point. This could be understood
by the different choice of the order parameter at a consolute point and the
plait point [6].

The description of the crossover from the background region (with
regular nonuniversal behavior) to the asymptotic region (with universal
power law behavior) requires the calculation of crossover functions which
could be checked by comparison with experiment. Most of such calcula-
tions were performed within mode coupling theory (MCT) [7] (for a
review, see Ref. 8). Here we present the results for such crossover functions
obtained within RGT and a more complete analysis of the experimental
results [ 1]. In particular, a nonasymptotic RGT of models H and H' [9]
has been formulated in Ref 2 and compared with experiments at the
vapor-liquid critical point in pure fluids, as well as at the consolute point
[10] and at the plait point [6] in mixtures.

Within RGT the nonasymptotic behavior can be understood as a
crossover of the model’s (static or dynamic) coupling parameters from their
background values to their fixed point values at 7,. The dependence of the
model coupling parameters is calculated by RGT and inserted in the cross-
over functions to be considered, e.g., for the TCs. Such an approach had
been developed for the critical dynamics near the superfluid transition [11]
and applies here equally well.

A further application of RGT is the calculation of critical effects in
sound propagation. This is achieved by including the longitudinal dynamical
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degrees of freedom into the set of dynamical model equations. Recently we
performed such a calculation near the pure liquid critical point [ 10, 12],
here we consider the more complicated situation in mixtures. For pure liquids
and for the consolute point, a phenomenological theory was developed in
Refs. 13 and 14. For pure fluids a basis for the phenomenological theory was
given in Ref. 15 by the extension of model H, and in Refs. 10, 12, and 16,
a nonasymptotic RGT was formulated and compared with experiments (for
a recent asymptotic calculation, sec Ref. 17). So far, no theoretical basis by
RGT was presented for the consolute point and no theoretical results were
available for the plait point [ 18]. Our nonasymptotic results for the critical
sound propagation in all cases involve, besides thermodynamic quantities,
the dynamic parameters determined from other TCs. The static coupling
constant of the sound degrees of freedom to the order parameter is found to
be the logarithmic derivative of an appropriate weakly diverging com-
pressibility in all cases and has the property to decrease to zero approaching
the background.

2. CRITICAL DYNAMICS OF MIXTURES

2.1. The Model Equations

The critical dynamics of a mixture is described by the equations of
motion for the entropy densities a(x), the local concentration ¢(x), and the
transverse momentum current j,(x). If the sound propagation should also
be described, we have to add the equations for the mass density p(x) and
the longitudinal momentum current j,(x). At the consolute point the local
concentration constitutes the order parameter density and we choose as
densities ¢, g,, and ¢, as the linear combination of the fluctuations Ac(x),
Ad(x), and Ap(x),

d(x) =/ N (Ac(x) = {Ac(x)))

a
0(x)= /N, [Aa(x)—(;") (Ac(x)—mc(xm] (1)
C T.P

0
alx) =N, [Ap(x)—(—f) (Ac(x)—wc(xm]
¢ TP

whereas at the plait point and at the critical point in pure fluids, the
entropy density constitutes the order parameter and the densities read
accordingly,
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0
ni(x)=/N, [AC(X)—<5§>A P(AG(X)—<AG(X)>)] (2)

0
x) =/ | 9000 (22

) (Aa(x)—< AG(X)))}
4, P

g, terms are to be skipped for pure fluids. Statics is described by the

Hamiltonian

1
H=J dx 2 {7452()6) +(Vo(x))? + a1 g1(x) + a2 q5(x) +2a1241(x) g2(X)

+0,26) + 13 00 +7102(6) ¢3(x)

+724(x) (bz(x) —2h,g,(x) _2172‘12(?6)}

(3)

leading to strongly and weakly diverging thermodynamic derivatives (the
a; ; are thermodynamic background values), which are, in the case of the

consolute point,

<¢¢>C=R—T(—aﬁ>, (g 1>e=
T, P

p \o4

op

AT (30
P aT c, P

oo

= RT, — — .
{42 42>, R”(ap>m’ {q1 427 RTP<6P>T,C

and, in the case of a plait point,

RT [ do RT [ dc
(¢ ¢>c=——< >A,P, {4, ql>c=7<a>w

p \oT

op
oP

oc
oP

{42 q2>c=RTp<—> ; {q q2>c=RTp<—> .

(4)

R (3)
a 4 aT ¢, P

(5)

(6)

A1 (29)
- P aA a, P

(7)
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The appropriate dynamic equations are an extension of model H' [9, 27]:

o , OH 25}1 2511
—_—= L -
=T 5 \Y 5, + L,V < (V¢ 0, (8)
T 2(SH 2511 SH
>, =LV 5¢+ uv 3, + L,V P g(Vq,) 5] + 0, 9)
g, OH SH OH SH
—2=L,V? LpV? =+ AV ———,V —
o LV Gyt eV s R AV S el
SH oH
_ —— vV -
gV<q2 5)) g:9 3 + 6, (10)
dj SH SH < 5H>
Vz———c V— g, V|[¢p—
o “ 0js z 39, 8 ¢5(12
H SH SH
+(1-9) g{(V¢)—+(Vql) V——}
a9, 04,

—g(l*ﬂ_){Z[jk

k

oH oH
a‘vk’ 5 H*‘”I

0j OH 6H SH
L =1,V? Tg (Vv (v -
a M st g{ "o 6¢ Vo) 5 5%}
oH oH
—87 {z[fk 5. —Vii 3 ]}+®, (12)
k k

There are now three model OCs according to the modes of mass diffusion,
heat diffusion, and the OCs for the corresponding crossover phenomena.
All other OCs in the equation are related to these [2]. The mode couplings
g, g, give rise to critical effects in the OCs and the deviation from van
Hove theory. The fluctuating forces @, are Gaussian distributed and fulfill
the usual Einstein relations.

We define suitable dynamical parameters, the diffusion rate ratio w
and the mode coupling f,

W=——= =

—\/: (13)
Only these two parameters besides I, the order parameter OC, enter the
physical expressions for the TCs because irrelevant parameters are neglected.

One should note, first, that the physical meaning of the model OCs
depends on the definition of the set of variables in Eq. (1) or (2} and,
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second, that for the same reason the dynamic parameters enter the TCs in
different ways,

2.2. Universality

In order to calculate the dynamical critical effects, we apply RGT to
this model. The asymptotic singularities are determined already by the set
of equations for ¢, ¢,, and j, alone, and it turns out that they are the same
as those obtained in the even simpler model H for the pure fluid [9]. Thus
the dynamical critical exponent z is the same as for pure fluids,
z=4—x,—n~ 3, where the nontrivial exponent x, is calculated from the
renormalization of the order parameter OC and y is the static critical expo-
nent of the correlations at 7',. This establishes universality at critical points
in fluids, although for mixtures an additional dynamical parameter w
appears. However, the fixed point value for w is w* =0 and that of the
mode coupling f is the same as found for pure fluids. The transient expo-
nent of w is related by w,, = 1x, to the pure fluid critical exponent x,. The
exponent of the shear viscosity is x,=1—x,—# in all cases. In conse-
quence, appropriate defined dynamical amplitude ratios, e.g., the Kawasaki
amplitude, have the same asymptotic values at the different critical points.

In the nonasymptotic region the model parameters are different from
their fixed point values and depend on (1) the distance from the critical
point and (ii) the specific fluid considered. The dependence of the
parameters on the distance from the critical point is described within RGT
by flow equations with the values of the parameters in the background as
initial conditions. These have to be found by comparing the theoretical
expressions for one or two TCs with experiment.

3. TEMPERATURE DEPENDENCE OF THE TRANSPORT
COEFFICIENTS

The expressions of the TCs are obtained by comparing the dispersion
of the hydrodynamic modes calculated from the model equations above
with those from the hydrodynamic equations for a mixture [19],

0o [ Dky (ks /04 <5A> > K ;
. S92y (52 Xl ver
a1 { T <T<ac>” T ). » +pTJV
ky /04 o4 2
07 <a‘c>r,p_<ar>f,JV( (4

0c Dk dj, n
- VZT 2,’ 29t g2
T +DV% 2 p Vi, (15)
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ap(x, 1) o B

o+ Vi =0 (16)
Oii(x, 1) 1 ﬂ-) y _
EY +VP(x,1t) p<C+3;7 V(Vji(x, t))=0 (17)

In this way relations between the model vertex functions and the
hydrodynamic TCs are established. The vertex functions are expressed by
thermodynamic quantities (the static vertex functions) and the dynamic
parameters.

3.1. Mixtures Near a Consolute Point

Let us consider as an example of this procedure a mixture near the
consolute point. From the structure of the dynamic model, a nonpertur-
bative relation between the mass diffusion D and the thermal diffusion ratio
k ; is obtained. The thermal diffusion ratio is exactly the inverse of the mass
diffusion over the whole temperature region from asymptotics to the back-
ground (R here is the gas constant)

L
kelt) =5 (18)

This has been verified in Ref. 20 for aniline—cyclohexane up to values of
t~ 1072, but it would be worthwhile to prove this for larger values of t. In
passing we mention that such a simple exact relation does not hold near
plait points. There, it is fulfilled only in the asymptotic region [2].

Inserting for the vertex functions calculated in one loop order, we
obtain the final results for the TCs, namely, the mass diffusion,

D(t)=&E() 2 L(0)(1 — 15 f2(1)) (19)
the shear viscosity,
kT 1S 2
A1) == é(t)[<l—36l_wz(t)>/r(t) / m} (20)

and the thermal conductivity,

2
1((_’)=L#<1 A ) 21y
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with
dr_dingn3d ., dw__dlnén3
- dr 4 dr a8
5 (22)
df dinént <h_f2 1 >
dt dt 24l—w

Thus the critical enhancement of the thermal conductivity is directly
related to the temperature dependence of the parameter w(t).

The general procedure is now to determine the initial parameters of
the flow equations [ Eq. (22)] by comparing with one or two TCs in a cer-
tain temperature region. We use the shear viscosity [ Eq. (20)], but one has
to keep in mind that the thermal conductivity [ Eq. (21)] is most sensitive
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Fig. 1. Comparison of theory with 2-butoxyethanol-water
data (see text for the Refs.). Fit of the correlation length & of
the shear viscosity 5, the thermal conductivity w, and our
prediction for the mass diffusivity D compared with the
experimental data.
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to the flow of w and would be the most sensitive experimental quantity to
be fitted in order to find w(z,). Unfortunately, no such data are usually
available, and therefore, the shear viscosity serves for the determination of
all three initial parameters I'(1), f(t,), and w(t,).

The mixture 2-butoxyethanol-water is an exceptional case. First, the
correlation length data extend into the background region and all three
TCs have been measured [3,21]. We have performed fits of the shear
viscosity corrected for the regular temperature behavior. For the back-
ground the uncorrected shear viscosity is increasing since we approach T,
from below. The corrected data lead to a nonzero background value of the
parameter w. This indicates and, assuming this value of w is valid, predicts
a critical enhancement of the thermal conductivity. Here we include the
experimentaly observed enhancement in our fit procedure and then predict
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—

Fig. 2. Dynamic parameters / and »w, Onsager coefficients I
(solid curve), I,y {dashed curve), and Kawasaki amplitude R
for 2-butoxyethanol-water as a function of the temperature
distance ¢ from T,
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the mass diffusion (see Figs. | and 2); aniline-cyclohexane has been
analyzed in Refs. 10 and 22.

3.2. Nonuniversal Kawasaki Amplitude
The experimentally defined Kawasaki amplitudes [ 7] at the consolute
point and for pure fluids read

6mnD
Reons — bmn DS and Revre = 22T e (23)

e =T wp T T

respectively. A more complicated expression applies for the plait point [2].
Inserting the theoretical expressions, we obtain the nonasymptotic
amplitude (w=0 for pure fluids),

_ 3 I —]—ﬂ)—
Rth_zf_?m(l—ﬁf(’))(l_%1—w2(1)> e

Although the asymptotic value of the Kawasaki amplitude is R}, = 1.056
in all cases, the nonasymptotic expression shows quite different crossover
behavior. For the consolute point its value is within 10 of the asymptotic
one (see Fig. 2), whereas for the vapor-liquid transitions, it increases to its
larger background value (see Figs. 2 and 3 in Refl 22). This is connected
to the different flow of the mode coupling at consolute points ( f staying
almost at its fixed point value even in the background) and gas-liquid criti-
cal points (f decreasing farther away from T, to its small background
value).

4. SOUND MODE

So far only the model H' equations have been considered; now we
include the equations for the mass density and the longitudinal momentum
current, i.e., consider the whole set, Eqs. (8)-(12). This enables us to
calculate the critical effects in the sound velocity ¢, and the sound attenua-
tion o,

X1, w) =RLEU1, w) — iwD(1, w)] and

kwﬂ[‘éf(l, w) — w1, w)]
2¢3(t, w)

aft, )= (25)

We neglect the subleading terms &, in the following; however, these terms
are important in order to reproduce the proper hydrodynamic result in the
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background. The structure of %, turns out to be the same for all critical
points (it agrees also with the formal expressions at the superfluid tran-
sition in *He [23, 247),

L +92[1] FOWli])
I+y2[i] F,(ole i1, wi])

with #{¢, w) found from the matching condition below. The sound velocity
at zero frequency reads c2(1,0)=c2 +c2,, and only ¢2, contains the
singular part proportional to 7 Straightforward calculations lead for pure
fluids to ¢2, =0 and ¢2,=(3P/0p),. For mixtures ¢, and c,,, containing
T.-line derivatives, depend on whether we are near a consolute or a plait
point. For the consolute point we obtain with ¢2, ~ (0P/0p). . the structure
of the ansatz of the phenomenological theory of Ferrell and Bhattacharjee
[ 13, 14] and the scaling properties agree with those mentioned in Ref. 25.
For the plait point ¢2, ~(0P/dp), 4 (4 is the difference in chemical poten-
tial of the mixture components), and the same asymptotic scaling behavior
as at the consolute point is obtained. However, the nonasymptotic
behavior might be different.

The static coupling y between the order parameter and the sound
mode degrees of freedom is related to the logarithmic derivatives of the
singular part of the sound velocity and may be approximated by

Gt w)=c +cA[1] (26)

2d In c5,(7)

v dint (27)

P =
In the asymptotic limit it takes its fixed point value, y** = 2(a/v).

The function F, is an amplitude function, related to the so-called
“frequency-dependent specific heat” (although we would not use such a
name at the plait point, where it is more a concentration susceptibility),
which can be calculated within the simpler model H and reads

1( v? 1 v 2
F, (v, w):_f_l{luv_ 1nu+v+_v_ [Zlnv_*iln v+}} (28)
with
2
v v

=— - 29
vy 21L <2> +iw (29)

The parameters v and w are

_ E73(1) o w

WLt | =—-———, Nl | = 30
e R To p T 0
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The temperature distance ¢ and the frequency w also enter via the effective
temperature distance 7, which is finite at finite frequency in the limit r =0
by the matching condition,

8y _M_ 2_‘8v
t +(Fetr[f(l,a))]> =7 o) (31)

The effective OC of the order parameter, which appears in the frequency
variable w and the matching condition, contains for the mixtures the
dynamic parameter w, ',y = I'(1 —w?). The effect of w is to increase the
region of validity of the asymptotic power law behavior of I'(1); see, e.g.,
the dashed curve in Fig. 2.

4.2. Pure Fluids

At T, the attenuation in one wavelength, a, x A, reaches in pure fluids
a finite universal value for small frequencies, whereas in mixtures it goes to
zero like w**". However, one should be cautious in applying the asymptotic
results in the experimental regime because of nonasymptotic effects in the
various couplings and/or static quantities involved (see, e.g., for the con-
solute point [26]). In pure fluids at finite but low frequencies, a nonuniver-
sal value of the attenuation in one wavelength is observed and this value

3.0 T A T
~— from sound velocity

----- from thermodyn. derivatives Xe
25L O “He m *He O Xe .

a, /(o).

“10* 10° 102 10"
x=(2E, '/, )"

Fig. 3. Normalized attenuation in one wavelength at T, as function of scaled
frequency x.
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was related to the nonasymptotic behavior of the specific heat C,(¢) by
Bhattacharjee and Ferrell [13]. In our theory this effect is of the same
physical origin and related to the nonasymptotic behavior of the static
coupling y? shown in Fig. 3. From Eq. (26) we calculate the ratio of
the attenuation in one wavelength at finite frequency to the value at zero
frequency at T,

% _yAx) 1434 In2
@). 75 T+(Ix)4) In2

(32)

where x = (2Egw/I,)"*" is the effective temperature distance at finite fre-
quency. Figure 3 shows our results in comparison with the experimental
values given in Ref. 13. Very near T, (where linearization around the fixed

T Ty

=
1MHz
(V) ST I |

10° 10™ 10° 102 10"
t

Fig. 4. Adjusted attenuation as a function of the tem-
perature distance from T, at various frequencies in different
liquids. The value of the attenuation is adjusted to one for
each liquid at the lowest frequency and smallest tempera-
ture distance 7 from 7.

«
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point is allowed), the specific heat or compressibility might be fitted by an
expression including Wegner corrections to the asymptotic power law,
Cy~17%1+gt?), with 4=05. Then, it is seen from the logarithmic
derivative of the specific heat that the existence of a maximum in the
attenuation in one wavelength depends on the sign of g. For a negative
amplitude, a maximum is predicted, whereas for a positive amplitude the
attenuation decreases monotonically to zero in the background (high fre-
quencies), when the specific heat reaches its constant positive background
value. Thus our result produces the expected [ 13] behavior in the back-
ground region for high frequencies (large x). An extensive comparison of
the sound velocity and attenuation for various fluids can be found in Ref. 12.
Here we show three examples for the attenuation in *He [27], *“He [28],
and Xe [29] in Fig. 4, including all nonasymptotic effects of static and
dynamic origin.
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NOTE ADDED IN PROOF

An expression of the same structure as Eq. (26) for the asymptotic
regime has been found in an intuitive derivation by A. Onuki (see J. Phys.
Soc. Jpn. 66:511 (1997), and this conference). It agrees with our expression
in the asymptotic regime concerning the static factors ¢, and ¢2, but differs
numerically, as to be expected, in the dynamic part because of different
methods of calculation. The differences in the dynamical function are given
in a recent paper by A. Kogan and H. Meyer (J. Low Temp. Phys., in
press), where a comparison of our nonasymptotic and asymptotic theory as
well as the asymptotic theory of Onuki [17] for the pure fluids *He and
“He has been performed. We thank A. Kogan, H. Meyer, and A. Onuki for
sending us pre- and/or reprints of their paper.
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